A NOVEL SYNTHESIS OF 2,4-DIOXO-1,2,3,4-TETRAHYDRO-PYRROLO[2,3-d]PYRIMIDINE DERIVATIVES

Shigeo SENDA and Kosaku HIROTA Gifu College of Pharmacy, Mitahora, Gifu, Japan

6-Hydrazinouracil derivatives were allowed to react with ketones or aldehydes to give 5,6-disubstituted 2,4-dioxo-1,2,3,4-tetra-hydropyrrolo[2,3-d]pyrimidine derivatives. The mechanism for the formation of these compounds is presented.

Up to now, some 2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,3-d]pyrimidines or 7-deazaxanthines have been synthesized by J. Davoll 1 , R. K. Robins 2 , and E. C. Taylor 3 .

The authors studied a new method for the synthesis of 5,6-disubstituted 2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,3-d]pyrimidine derivatives by heating 6-hydrazinouracil derivatives 4) with ketones or aldehydes. Thus 6-hydrazino-1,3-dimethyluracil (Ia) was refluxed in a mixture of methyl ethyl ketone and xylene and the resulting hydrazone (IIa) was refluxed in ethyleneglycol or tetraline for 2 to 3 hours to give 1,3,5,6-tetramethyl-2,4-dioxo-1,2,3,4-tetrahydropyrrolo-[2,3-d]pyrimidine (IIIa) with the evolution of ammonia (Method A). When Ia was refluxed in methyl ethyl ketone-ethyleneglycol or in methyl ethyl ketone-tetraline, IIIa could be directly obtained in a high yield without an isolation of the intermediate IIa (Method B). On heating Ia with a acidic catalyst such as $2nCl_2$ or conc. H_2SO_4 , a pyrrole ring closure was unsuccessful.

$$R^{1}CH_{2}COR^{2}$$

$$CH_{3}-N$$

$$CH_{3}-N$$

$$CH_{3}-N$$

$$CH_{3}-N$$

$$CH_{3}-N$$

$$CH_{2}R^{1}$$

$$CH_{3}-N$$

$$CH_{3}-$$

In accordance with the above synthetic method, some hydrazone compounds (11b--d) and 5,6-disubstituted 2,4-dioxo-1,2,3,4-tetrahydropyrrlo[2,3-d]pyrimidines (111b--g) were also prepared.

Compd. No.	R^1	R ²	mp (°C)
IIa	CH ₃	CH ₃	132-134
IIb	CH ₃	Н	203
IIc	С ₆ Н ₅	Н	168
IId	Н	CH ₃	147-148

Compd. No.	R^1	R^2	R ³	mp (°C)	Method
IIIa	CH ₃	CH ₃	Н	>300	A , B
IIIb	CH ₃	Н	Н	>300	A
IIIc	C6H5	Н	Н	287	A
IIId	Н	CH ₃	Н	>300	Α
IIIe	CH ₃	CH ₃	CH_3	233-234	В
IIIf	CH ₃	с ₆ н ₅	Н	285	В
IIIg	(CH ₂		Н	>300	В

The mechanism for the formation of the 7-deazaxanthine derivatives can be considered that a pyrrole ring closure proceeds as in the case of Fischer's indole synthesis.

REFERENCES

- 1) J. Davoll, J. Chem. Soc., 1960, 131.
- 2) a) Brit. 812366 [Chem. Abstr., <u>54</u>, 592 (1960)]; b) C. W. Noell and R. K. Robins, J. Heterocycl. Chem., <u>1</u>, 34 (1964).
- 3) E. C. Taylor and E. E. Garcia, J. Org. Chem., 30 655 (1965).
- 4) a) W. Pfleiderer and K.-H. Shündehütte, Ann. Chem., <u>615</u>, 42 (1958). b) Ger. 1186466 [Chem. Abstr., <u>62</u>, 13159 (1965)].

(Received February 18, 1972)